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The Kac ring model is used to test the validity of some conjectures about 
irreversibility. If the whole system is regarded as the universe, then it is 
demonstrated that all clocks (subsystems) run in the same direction during 
those times when the universe is not in equilibrium. In addition, mathe- 
matical techniques are introduced by means of which the appropriate order 
parameter for large, finite Kac ring models can be evaluated asymptotically. 
It is shown that the relaxation of this order parameter to its equilibrium 
value of zero is not exponential. 
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1. I N T R O D U C T I O N  

In  look ing  over  the l i te ra ture  on the subject  o f  irreversibil i ty,  one is imme- 
dia te ly  s t ruck  by the fact  tha t  mos t  o f  the ideas  presented  are at  once self- 
evident  and  undemons t rab le .  (1-3) This a p p a r e n t  con t rad ic t ion  is pe rhaps  not  
too  surpr is ing  in a subject  where the s ta tements  o f  the quest ions  themselves 
are so i l l -defined as to  v i r tua l ly  prec lude  the crea t ion  o f  a conceptua l  f rame-  
work  (i.e., model )  within which ca lcula t ions  can be made.  We need only po in t  
o u t  tha t  ca lcula t ions  o f  t r anspor t  coefficients, re laxa t ion  t imes,  and  o ther  
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nonequilibrium properties of physical systems are based on, rather than 
substantiate, our intuitive ideas of what a system consisting of a large number 
of interacting particles should do. (4-6~ Indeed, it is necessary to introduce a 
hypothesis concerning the behavior of such a system in a statistical sense 
(Boltzmann's Stosszahlansatz or the notion of molecular chaos) in order to 
first write down the equation governing the motion of macroscopic param- 
eters (Boltzmann transport equation). (4,6~ This is not to deprecate those 
results which are obtained through great effort and ingenuity and which 
compare favorably with experiment. They are evidence that our underlying 
assumptions might just be correct. But our understanding of why our intuitive 
reasoning is right is not greatly enhanced thereby. 

It seems to us that the theoretical challenge is, at the very least, to present 
a model whose (rigorously derived) behavior is in accord (or discord) with 
established belief. In this and the following paper we have resurrected a very 
simple many-particle system which was originally proposed to illustrate the 
approach to equilibrium and a derivation of a simplified Boltzmann equation 
from the dynamical equations governing its motion. This system is referred 
to in the literature as the Kac ring model (7~ and, except for a recent generaliza- 
tion of the dynamics, (8~ has fallen into disuse for the obvious reason that its 
solution was given completely at the time of its inception. This paper is 
concerned with a derivation of  the behavior of subsystems of the original 
Kac model, which will provide the basis for a discussion of the arrow of time. 
The next paper treats the fluctuations of both the original Kac model and its 
subsystems. 

The main difficulty associated with discussions of the arrow of time is 
the use of language which presupposes its very existence. Words such as 
develop, evolve, change, and move, although widely favored, should be 
avoided if we are not to fall into the trap of assuming that which we set out 
to prove. The phrase "approach to equilibrium," while seemingly innocuous, 
appears to indicate a preferred direction on the time axis. Time should, in 
fact, be considered purely as a coordinate for observable phenomena with no 
direction implied or expressed. If  the arrow of time is to be established, it 
must result from the functional form of time-dependent phenomena and not 
simply as a consequence of the way we have chosen to draw the axis. 

Before specializing to the model we will review some general features of 
the real universe. Many observable parameters of the universe are not con- 
stants in time. If these parameters are associated with nearly isolated systems 
and change monotonically with time, then the associated systems serve as 
clocks. (The word "c lock"  here is used to denote something which indicates 
the direction of the time axis and does not necessarily refer to a counter 
which marks off equal intervals on that axis.) The kind of parameter we have 
in mind for this discussion is exemplified by Boltzmann's H-functional. It is 
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observed that the slope of  this functional as a function of time has the same 
sign for all systems. The negative or "downhi l l"  side points in the direction 
of the " fu tu r e " ;  hence the phrase "ar row of  time." 

It is important to distinguish at least two aspects of the arrow of  time 
question. The first aspect is that described above, popularly stated, " W h y  do 
all clocks go in the same direction?" The other aspect is characterized by 
the question, "Why  does an intelligent being have knowledge (memory) of  
events on only one side of  his projection onto the time axis and why is this 
side associated with greater order (larger H-functional)?" We are only 
concerned in these two papers with the first question. The answer to the 
second question lies outside the scope of present-day physics. 

2. GENERAL PROPERTIES OF KAC M O D E L S  

We will begin with a brief review of  the Kac model, following the 
notation of  Dresden (7) for the most part. The Kac model consists of a ring 
of n positions on which m scatterers are placed randomly. There is a particle 
at each position and the particle can be in one of two possible states, e.g. 
white or black. The state ~/of a particle is given by 

�9 /p(t) = + 1 if the particle at position p, time t, is white 

~7~(t) = - 1 if the particle at position p, time t, is black 

The state ~ of the position can be expressed in a similar manner as 

% = + 1 if there is no scatterer at position p 

% = - 1 if there is a scatterer at position p 

The system dynamics is as follows: In one unit of  time all particles jump 
to the adjacent position in the counterclockwise direction. If  there is a 
scatterer at a particular position, the particle leaving that position changes 
state upon jumping to its new position. The equation of  motion is 

~ ( t  + 1) = ,~+~,7~+1(t) (1) 

from which 

~ ( t )  = ,~+,  ... % + ~ + ~ ( 0 )  (2) 

The microstate of the system is {~Tv(t)}. A macrostate can be introduced by 
defining the order parameter 

v(t) ~ O/n) ~ ~(t) (3) 
p = l  

Of particular interest is the behavior of the order parameter after preparation 
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of  the system in a highly ordered state, r(0) = 1. Combining Eqs. (2) and 
(3) yields 

1 

P(t) = (l/n) ~ "~+1 "'" "p+t (4) 
p = 2  

which is the order parameter after preparation in a highly ordered state at 
time t = 0. 

An ensemble average can be obtained by averaging over all possible 
arrangements of the m scatterers on the n positions: 

<r(t)} = ~ ( -  1)~G(s) (5) 
s 

where 

Although Eq. (5) cannot be simplified further, it can be reduced to a more 
manageable form in the thermodynamic limit, n >> 1. We first look at times 
when t << n and t* = m/n is finite. The asymptotic form becomes 

G ( s ) ~  (;)/zs(1 - / z )  t-~ (7) 

Substituting Eq. (7) into Eq. (5), we obtain 

( r ( t ) }  ~ (1 - 2/,) t (8) 

Because we are interested in large, finite Kac models, we must not 
neglect the behavior of Eq. (5) for t ~ n. To facilitate this examination, 
we introduce t '  = n - t and s '  = m - s. In terms of our new variables we 
write Eq. (5) as 

( r ( t ) }  = ( -  1) m ~ ( -  1)~'O(s') (9) 
8' 

and for t '  << n we follow the same procedure as above and obtain 

(r(t)} z ( - - 1 ) m ( 1  -- 2/*) '~-t (10)  

At all other times, t, t' finite fractions of n, there is no simple form for Eq. (5). 
However, the magnitude of (F( t ) )  for these times is of the order n-1/2 or smaller 
and it seems reasonable to consider these portions negligible in comparison to 
the exponential portions of (P(t)}.  Combining Eqs. (8) and (10) yields 

(F ( t ) )  ~ (1 -- 2t~) t +_ (1 -- 2t*)"-' (11) 

Expression (5) can be evaluated partially, using the method of steepest 
descents. This method allows us to express ( P )  as an expansion in powers of 
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tin and (n - t)/n. The evaluation is carried out in the appendix. Equation (11) 
results when we drop all powers of tin and (n - t) /n but the zeroth. The 
first-order approximation is 

<r(t)> ~ e x P [ 2 n ~ - ~ m ) ] t a n h  ~ In m n 5tin 

f o r  t <~ �89 - [m(n - m ) ]  112, ~ = 1 + [ (n  - t ) /(n - 2 m ) ] ;  a n d  

[ ~ m ( n  - t )  2] { 1 [  n - m ]~(n-,,,t)]; (13) 
<r(t)> z e x p [ ~ - ~ ] t a n h  "- t  ln- m n - m j j  

for t ~> �89 + [m(n -- m)] 1/2, /~ = I + [t/(n - 2m)]. These equations indicate 
that the approach to equilibrium in a Kac model is actually somewhat steeper 
than the exponential decay predicted by Eq. (11). For large, dilute systems, 
however, the error in Eq. (11) can be considered negligible. 

3. I N T E R A C T I N G  KAC M O D E L  S U B S Y S T E M S  

We will now expand the applicability of the Kac model to examine the 
relationship of weakly interacting systems. Consider a Kac model, as discussed 
above, with n positions and m scatterers. Now consider a subset n~ of those 
positions containing ms scatterers. Let the members of the subset be contiguous, 
which implies a weakly interacting system because it is coupled to the rest of 
the Kac model only at the ends of the subset. The Kac model can now be 
thought of as the union of some number of these subsystems, where 

n = ~ ns (14a) 
8 

m = ~ ms (14b) 
s 

An order parameter can be defined for each subsystem as 

Ps + n8 

p~(t)= ~ ,~,(t) (15) 
/ ~ = P s + l  

where p~ indicates the starting point on the ring for the subsystem s. No loss 
of generality is incurred, however, by letting Ps = 0, because the order 
parameters are rotationally invariant. 

4. N O N E Q U I L I B R I U M  PROPERTIES OF S U B S Y S T E M S  

As with the whole system, each Kac model subsystem must have a 
Poincar~ cycle because it has a completely deterministic Hamiltonian. (8~ 
This Poincar6 cycle time T can be no greater than that of the whole system 
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[T --- n, 2n for ( -  1) m = + 1, - l] because at such a t ime the microstate of  the 
system has returned to its initial condition. We will now demonstrate  that  
the Poincar6 cycle can be no smaller than this value. 

Assume that  there exists a t ime Ts < n such that  the microstate of  the 
s th  subsystem will be repeated for  any arrangement  of  scatterers. F r o m  
the equat ion of  mot ion  

~j(rs )  = ~j + 1"" ~j+ ~snJ+ ~s(0) (16)  
we obtain 

ej+l -.. ej+r, = 1 (17) 

for  1 ~< j ~< n~, which implies 

ej : "j+r,  (18) 

This condit ion is inconsistent with the condit ion that  the scatterers are placed 
randomly on the ring. In the thermodynamic  limit the cases satisfying (18) have 
zero weight in the ensemble and can be disregarded. However,  if T~ = n, 
Eq. (18) is satisfied for all members of  the ensemble. Therefore  the Poincar6 
cycle of  a subsystem is the same as that  of  the whole system. 

The relaxation t ime of  a subsystem differs f rom that  of  the whole system. 
I f  the whole system is prepared in highly ordered state, F(0) = 1, all sub- 
systems are also prepared in a highly ordered state, Fs(0) = 1. However,  each 
subsystem will not  necessarily approach equilibrium at the same rate. See 
Fig. 1. By analogy to Eq. (8) we write 

- 1 (1 - 2tOf'(t - 1) (19) (I '~(t)) = n~___~ln~ (1 - 2t~s)I's(t - 1) + 

This can be i terated to obtain 

[ n s -  1 \ t  1 t-1 _ . ~ [ n , -  1\ ~ 
(P~(t))  = [ - - - - ~  ) (1 - 2/~,)t + ; e=o2 (1 - 2/z)t-e(1 - z/z~) t - - - - ~  ) 

= ~ (1 - 2tQ t 2n~-~ -- ~ i --2/~, + 2n~(/~ - / ~ )  + 1 - 2t~, 

(20) 

where the prepared state is F(0) = 1. 
To  simplify Eq. (20), consider two cases. In the first case let the densities 

/~ a n d / ~  be nearly identical, 

i ~  - I~ = O ( 1 / n 3  (21) 

The first term in Eq. (20) is small compared  with the second and we are 
left with 

(r.(t)) x (1 - 2t~)t+~/(1 - 2~3 z (1 - 2t,3 t (22) 
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Fig~ 1. Comparative relaxations of subsystems with different scatter densities. 

as one  expec t s  in  the  case  where  the  s u b s y s t e m  is s imi l a r  to  the  who le  sys tem.  
I n  the  s e c o n d  case  le t  the  dens i t ies  be s ign i f i can t ly  different ,  i .e.,  

/x s - / x  = O(/~) (23) 

N o w  the  s e c o n d  tern] d r o p s  o u t  o f  Eq.  (20) a n d  we are  lef t  w i th  

{D~(t)} ~ [(n, - 1)/n,]e+l(1 - 2/x,) t z (1 - 2/**) t (24) 

a n d  in  b o t h  cases  the  r e l a x a t i o n  t ime  is 

-s ~ 1/2m (251 
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Chronology of the Kac Model 

Behavior of Kac model 

Subsystems with Subsystems with significantly 
Time similar densities different densities 

0 Highly ordered 
<< r All systems are approaching 

equilibrium 
~< ~ All systems are approaching 

equilibrium 
~> T All systems are at 

equilibrium 
>> ~- All systems are at 
<<n -- ~ equilibrium 
<~ n - r All systems are at 

equilibrium 
>~ n - r All systems are moving away 

from equilibrium 
>>n - �9 All systems are moving away 
< n from equilibrium 

n Highly ordered 

Highly ordered 
All systems are approaching equilibrium 

Most systems are approaching equilibrium, 
others are at equilibrium 

Some systems are approaching equilibrium, 
others are at equilibrium 

All systems are at equilibrium 

Some systems are moving away from 
equilibrium, others are at equilibrium 

Most systems are moving away from 
equilibrium, others are at equilibrium 

All systems are moving away from 
equilibrium 

Highly ordered 

W e  are left wi th  the ra ther  r emarkab le  resul t  tha t  the re laxat ion  t imes 
o f  the subsystems are no t  dependen t  upon  the re laxa t ion  t ime o f  the whole 
system in any direct  way. This  means  tha t  the whole  system may  be at  
equ i l ib r ium while some of  its cons t i tuent  subsystems are still app roach ing  
equi l ibr ium.  The resul t  is less r emarkab le  when one considers  tha t  for  large 
n and  ns the p robab i l i t y  tha t  t~ and/z~ will differ significantly is negligible for  
any  subsystem which is a finite f rac t ion  o f  the whole  system. However ,  i f  the 
res t r ic t ion  o f  r a n d o m  scat terer  p lacement  is re laxed to al low for densi ty  
va r ia t ion  among  the subsystems,  then  we have the s i tua t ion  where different 
subsystems reach equi l ib r ium at  different t imes. 

The  existence of  a c o m m o n  Poincar6 cycle and different re laxa t ion  t imes 
al lows for  the set o f  s i tuat ions  summar ized  in Table  I. No te  especial ly tha t  
there  is no s i tua t ion  where a finite f rac t ion  of  the subsystems are app roach ing  
equi l ib r ium while ano ther  finite f rac t ion are  moving  away  f rom equi l ibr ium.  
In  the K a c  mode l  the a r row of  t ime is preserved.  

5. C O N C L U S I O N  

W e  have addressed  ourselves to one o f  the two aspects  of  the a r row of  
t ime discussed in the in t roduc t ion ,  " W h y  do all c locks go in the same 
d i rec t ion  ?"  In  the K a c  model  all clocks (subsystems) go in the same d i rec t ion  
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because they all have the same Poincar6 cycle. This results from their mutual 
interaction, which has been restricted by design to be as weak as the dynamics 
of the Kac model will allow. The interaction is weak enough that it has no 
effect on the relaxation times of the subsystems. The clocks therefore appear 
to be independent of one another as they approach equilibrium, but the weak 
interaction is sufficient to assure that they all run in the same direction. 

The foregoing implies (but, of course, does not prove) the following 
cosmological picture of a large, finite universe. An order parameter in this 
picture is neither a minimum nor a maximum at the temporal point we define 
as the present, but it has a well-defined, nonzero slope. The order parameters 
of all observable clocks have slopes with the same sign. The Kac model gives 
an indication of the reason for this phenomenon. There exists a time when 
the universe and all its subsystems are highly ordered. At any other time 
clocks must be moving in the same direction because even the weakest inter- 
action between subsystems will give them the same Poincar6 cycle. This 
explanation does not depend on whether the present is located on the slope 
to the right or to the left of the point of maximum order. It depends solely 
on the existence of a point when the universe is highly ordered. If  such a 
point exists, then the behavior of the Kac model is consistent with the observed 
behavior of clocks. 

A P P E N D I X .  STEEPEST D E S C E N T  C A L C U L A T I O N  OF ( P )  

Equation (5) represents an exact expression for the ensemble average of 
the order parameter F. Any evaluation of this expression, however, is 
impractical because the number of terms in the expression is dependent upon 
the system size n. Therefore this expression is not appropriate for analyses 
requiring the thermodynamic limit. It is desirable to rewrite this expression 
in a form which is amenable to evaluation for large systems. Indeed, we would 
like an expression which simplifies as n increases rather than one which 
becomes more complex. 

To accomplish this, we make use of a Laplace transform and its inverse 
to rewrite Eq. (5) in the form of an integral. Introducing the variable l con- 
jugate to m, we have 

' ;7' (;) 7 = dle'mZ(-1)~ [n- t]e- l •"  

= d/e'"(1 + e-')n-t(1 - e - ' )  t (A.1) 
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which is o f  the fo rm 

where 

I = A d l  e ~g(z~ (A.2) 
- i ~ + ~  

m n t f 
g ( l )  = l + ln(1 + e -*) + ~ ln(1 - e -t) (A.3) 

n /// n 

is o f  order  unity, thereby implying tha t  the integral is o f  the fo rm which can 
be evaluated by the me thod  of  steepest descents. 

We wish to distort  the pa th  of  integrat ion to follow a con tour  o f  constant  
phase. The  phase  in the case of  this integral is necessarily equal  to zero 
because the integrand is real at all points  on the real axis, which must  be 
crossed to pe r fo rm the integration. N o  problems arise in the distort ion of  the 
contour  because the integrand is an entire function. 

We first a t t empt  to see if there exist any paths  of  zero phase connecting 
the points  (y, irr) and  (:v, - i v ) .  The  imaginary  par t  o f  g ( l )  can be writ ten as 

- sin y t sin y (A.4) I m  g ( l )  m _ n.____~t t a n -  ~ eX + - t a n -  ~ eX 
= n  y n + c o s y  n - c o s y  

where l = x + iy.  

I t  is instructive to examine (A.4) for  arbi trar i ly small  values o f  y:  

I m g ( l )  m n -  t y + t Y 1' x # 1 (A.5) 
= n  y n e~ +-------3 n e  ~ -  

and  

m n - t  y + t 2 ,  
I m  g ( l )  = n y ~ e x +-------7 n x = 1 (A.6) 

Setting (A.5) and  (A.6) equal  to zero yields a real value for  x only under  
the condit ions 

t <~ �89 - [m(n  - rn)] 1/2, t >f �89 + [m(n  - rn)] 112, x # 1 (A.7) 

and  
t = 0 ,  x =  1 (A.8) 

We conclude that  condit ions (A.7) are necessary to establish a pa th  of  
zero phase  which is a legit imate distort ion of  the integrat ion contour.  
Numer ica l  calculations for  (A.4) demonst ra te  that  these condit ions are also 
sufficient. 

The  saddle points  o f  the funct ion g ( l )  are determined by 

d g  m n - t e -z  t e - '  
d l  n n 1 + e -~ + n l  - e - ~ - 0  (A.9) 

eZ n - 2t _+ [(n - 2t) 2 - 4 m ( n  - m)] 1/2 
= 2m (A.10) 

which has real roots  for  the values of  t satisfying the condit ions (A.7). 
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We know from Eq. (A.5) that the path of  integration through the saddle 
point is perpendicular to the real axis. Therefore we differentiate twice with 
respect to y to determine which of the saddle points satisfies the steepest 
descent condition: 

82g n - t e Z 
g " ( 1 ) = ~ =  n (1 + e ' )  2 

The roots satisfying condition (A. 11) are 

d = n -  2 t +  [ ( n - 2 0 2 - 4 r e ( n - m ) ]  112, 
2m 

n - 2t - [(n - 2t) = - 4 m ( n  - rn)] 1/2 
2m 

e I 

t e ~ 
+ n (I -- e~) 2 < 0 (A.11) 

n [m(n - m)] 1/2 t~<2- 

n m)lU 2 t >>- ~ + [m(n - 

(A. 12) 

Numerical calculations show that the zero-phase path passing through 
each of these points completes a legitimate distortion of the original contour 
with y = 0. The conditions for the steepest descent calculation are satisfied 
and 

where g( l )  and g"( l )  are calculated using Eqs. (A. 12), (A.3), and (A. 11). 
We have obtained an expression for ( F )  which is more amenable to 

calculation than is Eq. (5). The greater virtue of this expression, however, is 
that it is readily used to obtain approximate solutions to various orders of 
the quantities t /n  and (n - t ) /n .  To demonstrate its usefulness, we expand 
the above expressions and evaluate them to the first power in t in  and 
(n - t ) /n .  Expanding about t = 0, we obtain from (A.13) 

n - 2t + (n - 2m){1 - [4t(n - t ) / (n  - 2rn)21} 1'2 
e I 

2m 

l l - - r r l  s t  n - - t  
,,~ , c ~ = l + ~  

n m n -- 2m 

Therefore 

e~g(o = ezra(1 + e-')'~-t(1 _ e-Z)t 

= d~(1 + e-Z) ~ tanht ( I /2 )  

In 
rn n - m - s t ]  -m 

m " ( n  - - -m)  ~-m n - rn - t -n.~m 
z n- - -m 

• t anhe{ l [  l nn -mm n - m S t  ] )  

(A. 14) 
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- m m ( n n L ) ~ _ m e x p [ n l n ( 1 - ~ t n ) -  ( n -  m) ln(1 n-~tm)] 
• t a n h ~ f l [ l n n m m  n - ~ t r n ] )  

n n [ ~2t2 
ram(. ---m)~-m exp[---~-n + 2(n----rn)J tanht In n - m st 

m n - r n  

mm(n - - rn?  exP[2n~_~m) j tanh ~ In n - ~,t 
- m  m ivt - -  ivn 

From (A.11), we have 

(n - t )m(n  - m - a t )  tm(n - m - a t )  
g"(l)  Z + 

n(n - . t )  2 n(n - 2m -- ~t )  2 

m ( n  - m - a t )  [ (n  - -  t ) ( n  + c~t) 2 
n [ (n ~ - ~ , V ~ )  ~ - 

t ( n + 2 m  + a t )  2 ] 
[n 2 - (2m + c~t)2] 2 1 

t ~ a  

m(n - m - a t )  
n5 [(n - t )(n + c~t) 2 - t (n + 2 m  + at) z ] 

m(n  - m - ~t )  
n5 [n 3 + 2(a - 1)tn 2] 

(A.15) 

B u t  

m 
- ~ [ n  - m + (a - 2)t] 

n - - t  
a - 2 - - -  1 -  

n - 2 m  

yielding 

m(n - m)  I g"(l)  n2 1 
L 

to the first power in t/n. 

+ 

(A.16) 

2 m  - -  t 

n - 2m (A. 17) 

(2m - t ) t  ] m(n  - m)  
(n _T 7rn~n  Z m)]  z n2 (A.18) 

Therefore, with the help of Stirling's formula, Eq. (A. 13) becomes 

( P )  ~ expLn~_~m) ] tanh t In m 

A similar expansion of t about n yields 

" " m  [fl~m(n -- 0 2] ""  t (1 [ re- ( F )  ~ t . - )  exp[ ~ 2_-m- ~ ] ~ln tanh - ~ n m 

where fi = 1 + [t/(n - 2m)]. 

~(,, - t ) ] \  
(A.20) | [  

n - m j )  
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We can obtain Eq. (11) by dropping the first-order correction terms in t. 
Equation (A.19) becomes 

( P )  ~ tanh ~ In rn = ~[(n m)/m] +- = (1 - 2/z) ~ (A.21) 

while Eq. (A.20) becomes 

(I~> Z (--1)m(1 -- 2/*) n-t (A.22) 

The evaluation allows us to examine the nature of  the exponential 
approximation. Numerical examples using Eqs. (A.19) and (A.21) demon- 
strate that the approach to equilibrium is actually somewhat-more rapid than 
an exponential decay, following the exponential form closely at first and then 
dropping below it measurably just before the equilibrium region is reached. 
Exact calculations using Eq. (5) verify this in systems small enough to be 
conveniently analyzed by this method. 
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